If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144=16t^2+96t+4
We move all terms to the left:
144-(16t^2+96t+4)=0
We get rid of parentheses
-16t^2-96t-4+144=0
We add all the numbers together, and all the variables
-16t^2-96t+140=0
a = -16; b = -96; c = +140;
Δ = b2-4ac
Δ = -962-4·(-16)·140
Δ = 18176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18176}=\sqrt{256*71}=\sqrt{256}*\sqrt{71}=16\sqrt{71}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{71}}{2*-16}=\frac{96-16\sqrt{71}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{71}}{2*-16}=\frac{96+16\sqrt{71}}{-32} $
| 258/9h=-154/9 | | 2.54=35.9/x | | -(4/3)x=-4 | | 8x-5(3x+1=x+11 | | (3+5x)(2-3x)=12-15x2 | | 11x+17x-8+3=-9x+3-8 | | 3x(4x-10)=30 | | (8x-25)+(9x+34)=112 | | (t+6)(t−6)=(t+7)(t−8)+9 | | 7x-5x+12=x+7 | | 24x2+6=24x | | 3•(4x-10)=30 | | 16(u-903)=640 | | 17=19^x | | (4a-29)^3=-1 | | 2x(3-2x)=5x-12 | | 6x+28/25=7/28 | | 6/7+d=-27 | | 20000=2^x | | 2x-3=4(x+1) | | 4(x-(-5)=12 | | .50x+.25(70)=22.50 | | 2.25=3.25x | | 3/5x+2x+18=4x-1 | | (x-4)^3/2=-8 | | 6(x+6)/5=2x-4 | | 6z+5z+4z+3z=360 | | 50x+25(70)=225 | | 10/9=k/10 | | (5^2x)-26(5x)+25=0 | | X=10t^2+5t+2 | | (X^2)+(y^2)-6y+1=0 |